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Abstract 

 
Current distributed data management systems 

implement internal consistency constraints directly 
within the software.  If these constraints change over 
time, the software must be rewritten.  A new approach 
towards data management system based on the 
dynamic execution of rules is discussed.  By building 
upon the experiences gained with the Storage 
Resource Broker data grid, a scalable rule-based data 
management system can be designed. 
 
1. Introduction 

 
Data Grids support data virtualization, the ability to 

manage the properties of and access to shared 
collections distributed across multiple storage systems. 
[1] The data virtualization concept maps the physical 
aspects of the storage systems to a logical view of the 
information and data that is provided to the user and 
applications.  Shared collections are used to organize 
distributed data for data grids (data sharing) [2], digital 
libraries (data publication) [3], and persistent archives 
(data preservation) [4]. 

The current state of the art in data abstraction, as 
represented by the SDSC Storage Resource Broker 
(SRB) [5] architecture, relies upon the following 
multiple levels of virtualization: 
Storage access virtualization – this level of 
virtualization provides a single uniform interface for 
mapping between access APIs and the protocols used 
by different types of storage systems (e. g. Unix file 
systems, Windows FAT32, and other custom-created 
file systems such as SamQFS).  Distributed file 
systems usually support a limited number of operating 
system types: IBM’s GPFS on Unix [6], Gfarm on 
Linux systems [7]. Data grids provide uniform access 
to data stored in file systems, databases, archival 

storage systems, file transfer protocols, sensor data 
loggers, and object ring buffers [8]. 
Naming virtualization – this level provides naming 
transparency for shared collections including logical 
data set naming, logical resource naming, and logical 
user naming. It provides for access to and organization 
of data independent of their location, as well as 
authentication and authorization controls that are not 
dependent upon the storage repositories. The Grid File 
System working group of the Global Grid Forum is 
exploring virtualization of file names for file systems 
[9]. The SRB virtualizes naming across all types of 
storage systems [10].  
Process and workflow virtualization – this level 
provides a virtualization of operations performed on 
datasets either remotely or through the use of grid 
computing services to execute workflows across 
multiple compute platforms. It automates scheduling, 
data movement and application execution on remote, 
and possibly multiple computational platforms [11]. 
The Kepler workflow system uses actors to define 
allowed operations, and controls interactions between 
actors [12]. Kepler actors have been developed that 
manage access to SRB data collections. 
Information virtualization – this level provides a 
way to associate metadata with the data. Multiple types 
of metadata may be specified from simple attribute-
value-unit triplets to semi-structured metadata. The 
gLite Metadata Catalog associates metadata with 
entities that are defined by globally unique identifiers 
[13]. The SRB system associates metadata directly 
with the logical file name space [14]. 

 The data virtualization/abstraction as discussed 
above still does not provide complete transparency for 
data and information management. The additional level 
that is needed is “policy/constraint virtualization” 
which provides virtualization at the data management 
level as opposed to data and application (workflow) 
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levels. The development of a constraint-based 
virtualization system for data management can be 
viewed as a new level of virtualization of data and 
information management.  

When a user or organization stores data with 
associated metadata in a data grid, they apply policies 
to ensure that the resulting collection will meet their 
goals. Such policies include disaster recovery 
(syntactic replication) [15], persistent preservation for 
the long term (temporal replication) [16], caching on 
disk for ease of access, load balancing across 
resources, access by bulk operations for managing 
latency of wide area networks, automated metadata 
extraction and registration, work-flow launching, 
derived product generation, transformative migration 
of the encoding format (semantic replication) [17], etc. 
These policies can be applied at the level of the entire 
collection, or at a sub-collection level, or at the level of 
an individual dataset, or for a specific user and/or for 
specific logical resources. For example in the same 
data grid, one may have different policies for 
replication of files depending upon the importance of 
the sub-collection. 

A constraint-based knowledge system virtualizes 
constraints.  The rules and constraints that are used to 
manage state transitions within a data grid (changes 
to state information resulting from operations within 
the data grid) are explicitly defined.  By naming the 

rules and constraints, organizing them in rule sets, and 
choosing the level of granularity across which the 
rules will be applied, we expect to generalize data 
management systems.  The goal is to be able to change 
the sets of rules and add new rules without having to 
rewrite code.  In effect, this is the virtualization of the 
SRB data grid control mechanisms.  Constraint 
virtualization is needed across all levels of the system, 
including user access, global consistency properties, 
and state transitions during data grid operations. 
 
2. Rule-based Middleware 
 

The current architecture design for rule-based 
middleware is shown in Figure 1.  The architecture 
differentiates between the administrative commands 
needed to manage the rules, and the rules that invoke 
data management modules.  When a user invokes a 
service, it fires a rule that uses the information from 
the rule base, status, and metadata catalog to invoke 
micro-services. The micro-services either change the 
metadata catalog or change the resource 
(read/write/create/etc). 

The management of rule-based middleware is 
being investigated from multiple perspectives.  The 
first approach we are trying is to look at the constraints 
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used within the SRB to understand how they can be 
implemented using rule-based concepts [18]. This has 
required the assessment of the multiple pieces of state 
information in the SRB (there are more than 100) to 
define the associated rules and consistency constraints, 
and to see how they can be organized into classes of 
rules.  The goal is to see how these classes of rules can 
be integrated into a data management framework 
without losing any functionality. This study is 
underway. Our aim is to use these classes as the 
fundamental blocks for organizing the rules.  Related 
work is the characterization of rules used in active 
databases [19]. 

The second approach we are trying is specification 
of a language for consistency constraints [20]. This is 
an on-going activity to verify the syntax and semantics 
required for a language that describes the rules 
performed within the SRB.   The research is being 
conducted jointly by SDSC staff, Alin Deutsch (UCSD 
Professor), and his graduate student Dayou Zhou.  

The third approach we are trying is from the 
viewpoint of the collection itself. The main concept 
here is to consider the state information that are needed 
to describe manipulation of a collection in a digital 
library. This will be helpful in deriving rules for 
collection usage and access. This work is being done 
by Ioannis Katsis, a Graduate Student Research 
Assistant working with Yannis Papakonstantinou 
(UCSD Professor). 

The fourth approach we are trying is from the 
perspective of a persistent archive. In this area, our 
goal is to define the abstractions and workflows that 
are needed to perform archival processes. The long-
term goal is to be able to characterize the management 
policies needed for assuring the authenticity and 
integrity of records within a collection. 

 
3. Design 
 

In addition to the specification of requirements 
and development of an appropriate rule expression 
language, we have also begun research on the design 
constraints required to build a scalable system.  
Multiple rule-based systems are now under 
development within academia, including Fedora 
(Cornell) [21], Presto document system [22], 
Lifestreams storage model [23], and Haystack 
semantic web authoring [24].  The systems examine 
the use of rules to control a particular aspect of their 
data management system.  In a separate project, we are 
integrating the current SRB data management system 

as the distributed data support infrastructure for the 
Fedora digital library.  The integrated system will 
allow Fedora to assert relationships about the metadata 
attributes associated with the digital entities stored in 
the SRB.  Note that this integrated system, while a 
form of constraint management, will not manage the 
constraints that the SRB must implement to guarantee 
consistent data grid state information.  Instead, 
relationships between the descriptive metadata 
attributes about SRB digital entities will be managed 
independently of the SRB software by Fedora. 

We are seeking a generic solution that will support 
rules for data placement, rules for controlling access, 
rules for presentation, rules for federation, and rules 
for data ingestion.  Since the SRB already supports 
over 630 TBs of data with more than 100 million files 
at SDSC, the system must apply rule sets to massive 
collections. 

The development of a scalable system requires the 
following mechanisms: 
• Reification of constraints into metadata attributes.  

It is easier to do a join on a metadata table than it 
is to apply constraints while reading every object 
in the collection. 

• Granularity.  The rules may apply to a subset of a 
name space.  Examples are use of groups to 
represent multiple users, use of sub-collections to 
represent multiple files, use of logical schema to 
represent a set of descriptive metadata. 

• Constraint state information.  We will need to 
maintain status information about the application 
of each constraint on each digital entity in the 
shared collection.  The status information allows 
constraints to be dynamically changed and lazily 
updated. 

• Collective constraints.  These are assertions about 
levels of granularity and typically apply within a 
name space.  An example is checking the integrity 
of a collection.  The associated integrity rule is the 
periodic application of a process to validate a 
checksum for each file.  The associated constraint 
state information is the date that the checksum was 
last validated. 

• Procedural constraints.  These are processes that 
typically require evaluation of rules that go across 
multiple name spaces (logical resource, logical 
file, distinguished user name).  An example is the 
allowed view on metadata by a given user. 

The expected problems in developing a constraint-
based knowledge system will be: 
• Scalability.  Application of dynamic constraints on 

collections with a billion records. 
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• Deadlock.  Ordering of the application of 
constraints to ensure that the process is 
computable. 

• Complexity.  Identification of the generic 
constraints that are sufficient for handling 
expected procedures and integrative constraints 
needed for data management. 

• Size.  Management of the constraint space itself 
should not take more space than the collection 
metadata.  Since we currently support 500 
attributes per digital entity, will we be able to 
support 1000 constraints and keep the database 
size manageable? 
The constraints that are currently supported by the 

SRB can be classified by the relationships they impose 
on the five logical name spaces (resource names, user 
names, file names, metadata names, and access 
controls).  We are investigating ways to characterize 
the existing constraints in the following classes. 
User access rules: 

• views of collections (presentation of restricted 
sets of metadata). 

• views of files (presentation of restricted lists 
of files). 

• allowed operations on collections (ability to 
specify and present only the set of operations 
that the user is allowed to perform). 

• allowed operations on files. 
• end-to-end encryption constraints. 

Procedural rules: 
• rules for data placement, the locations where 

copies are preferentially deposited. 
• rules for aggregation of files into sub-

directories. 
• rules for access controls on storage systems. 
• rules for transformative migrations on data 

during  display. 
• rules for consistency checking of metadata. 
• rules for integrity checking of files 

(verification of checksum). 
• rules for pinning on disk. 
• rules for setting and releasing locks. 
• rules for version creation. 
• rules for aggregation into physical containers. 
• rules for use of parallel I/O streams. 
• rules for choice of transport protocol to 

manage firewall interactions. 
• rules for interactions between data grids 

(authentication constraints). [25] 
• rules for sharing of name spaces between data 

grids. 
• rules for updating audit trails. 

Global consistency properties 
• assertions on the synchronization of replicas. 
• assertions on the synchronization of name 

spaces in data grid federations. 
• assertions on data organization in a collection 

hierarchy. 
• assertions for application of access 

constraints. 
• assertions on metadata consistency. 
• assertions on name-space sharing between 

data grids. 
• assertions on  use of storage systems 

(maximum amount of data stored). 
 
4. Sample Rules 

We provide some rules that illustrate the concept of 
constraint-virtualization.  

 
ingestInCollection(S) :- /* store & backup */ 
        chkCond1(S), ingest(S), register(S) 

findBackUpRsrc(S.Coll, R), replicate(S,R). 
 
The above compound rule checks that condition-1 is 
satisfied, retrieves the metadata from the remote 
location (ingest), registers the metadata into the state 
catalog (register), identifies an appropriate storage 
location for creating a replica of the metadata and 
performs the replication of the metadata, registering 
the location of the replica into the state catalog.  Each 
of the component tasks can be implemented as an 
atomic rule.  Note that some of these tasks can be 
deferred to a later date, such as creation of a replica at 
a remote site when the remote system becomes 
available. 
 
ingestInCollection(S) :- /*store & check */ 
       chkCond2(S), computeClntChkSum(S,C1),   
       ingest(S), register(S),  
       computeSerChkSum(S,C2), 
       checkAndRegisterChkSum(C1,C2,S). 
 
The above rule checks that condition-2 is satisfied, 
computes a checksum on the metadata at the remote 
storage location, retrieves the metadata from the 
remote location (ingest), computes a second checksum 
after the transfer, verifies the checksum is correct, 
registers the metadata into the state catalog (register), 
and registers the value of the checksum into the state 
catalog. 
 
ingestInCollection(S) :- /store, check, backup &  

         check */ 
       chkCond3(S),computeClntChkSum(S,C1),   
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       ingest(S), register(S),  
       computeSerChkSum(S,C2), 
       checkAndRegisterChkSum(C1,C2,S), 
       findBackUpRsrc(S.Coll, R), replicate(S,R)   
       computeSerChkSum(S,C3),       
       checkAndRegisterChkSum(C2,C3,S). 
 
The above rule checks that condition-3 is satisfied, 
executes the rules from example 2, and then also 
locates a backup resource for the metadata, replicates 
the metadata, verifies a checksum on the replicated 
metadata, and registers the checksum value into the 
state information. 
 
ingestInCollection(S) :- /*store, check,  
                                 backup & extract metadata */ 
       chkCond4(S), computeClntChkSum(S,C1),   
       ingest(S), register(S),  
       computeSerChkSum(S,C2), 
       checkAndRegisterChkSum(C1,C2,S), 
       findBackUpRsrc(S.Coll,R), 
       [replicate(S,R) || extractRegisterMetadata(S)]. 
 
The above rule checks that condition-4 is satisfied, 
executes steps from example 3, but also in parallel 
with the replication of the metadata extracts additional 
metadata and registers the values. 

 
The example conditions are as follows: 
chkCond1(S) :- user(S) == ‘adil@cclrc’, i.e. perform 
the rule for only the specified user ‘adil@cclrc” 
chkCond1(S) :- coll(S) like ‘*/scec.sdsc/img/*’, i.e. 
perform the rule for all collections that include the 
collection hierarchy ‘/scec.sdsc/img/ in the pathname. 
chkCond2(S) :- user(S) ==  ‘*@nara’, i.e. perform the 
rule for all users within the ‘nara’ project. 
chkCond3(S) :- user(S) == ‘@salk’, i.e. perform the 
rule for all users within the ‘salk’ project. 
chkCond4(S) :- user(S) == ‘@birn’, datatype(S) == 
‘DICOM’, i.e. perform the rule for all users within the 
‘birn’ project for all data of type ‘DICOM’. 
[OprList]   implies delay execution to a later time 
                or queue execution in a CronJobManager 
Opr||Opr    implies do the rules in parallel 
Opr, Opr   implies do the rules serially 
 

The application of user access rules can be 
governed by metadata kept for each user and each 
record in the data grid.  The application of global 
consistency properties can be done through workflow 
systems that use atomic transactions on the data grid to 
check the status of the records and update as necessary.  
The application of the procedural rules is much more 
difficult.  It is straightforward to define the constraints 

that need to be checked when applying a defined data 
or metadata operation.  The inverse is much more 
difficult, namely the identification of the set of 
constraints that might cause a particular piece of state 
information to change.  This is needed to ensure that 
the application of the constraints results in a 
deterministic system.  An example is that the state 
information managed by the SRB data grid depends 
upon the order in which the rules are applied.  At the 
moment, these rules are hard-coded in software, so the 
same result occurs for a given operation.  When the 
rules can be changed dynamically, it is not obvious 
that the result is well-defined, unless the interactions 
between the changed rule and all other rules are 
known.  This can be reduced to a characterization of 
the order in which the rules must be applied for a 
deterministic solution.  In effect, an algebra is needed 
on allowed composition of constraints when executing 
a data grid operation. 

The approach that is planned for the 
implementation of state information virtualization is 
based on the phased porting of existing Storage 
Resource Broker modules to the new information 
management infrastructure.  This implies that a hybrid 
system may be initially developed, in which some 
constraints are hard-coded in software, and other 
constraints are implemented by checking a rule base.  
This approach has the advantage of identifying sets of 
constraint rules associated with a given data 
manipulation operation, identifying impact of applying 
dynamic constraints on performance, and enabling 
modular development. The goal is an open-source 
version that has no restrictions on distribution.  

 
5. Deferred Rule Execution 

 
The creation of a scalable rule-oriented data system 

depends upon the ability to do deferred execution of 
rules.  In the examples listed above, some of the 
operations can be deferred to a later time, such as the 
creation of a replica.  The approach that has been 
followed in the SRB data grid has been to define state 
information for each object for which a deferred 
operation must eventually be executed.  This is 
essential when dealing with wide-area-network 
latencies.  Examples of deferred execution include: 
• Synchronization of replicas after changing one of 

the copies.  A “dirty bit” is turned on to indicate 
that all future reads and writes should be done to 
the modified copy.  A synchronization command 
can be executed at a future time to update all of 
the replicas. 
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• Validation of checksums.  Even after a file has 
been stored successfully, it may be become 
corrupted.  Thus checksums must be continually 
revalidated to ensure integrity, preferably at a 
frequency that is four times faster than the 
expected degradation rate.  A time stamp is 
needed for each object for when the checksum 
was last validated. 

• Placement of files within a distributed storage 
environment.  A logical resource name can be 
used to identify the locations of the multiple 
storage systems where the copies will reside.  If a 
new physical resource is added to the logical 
resource name, then a copy would need to be 
created at the new location.  A change flag is 
needed to denote that the replication operation 
should be executed. 

This approach implies that the state information 
used to characterize the rules must be periodically 
checked by the data management system, A set of 
meta-rules will be needed to control the frequency of 
checking of state information, and the specification of 
the name-space granularity over which the rules will 
be applied.  A tuning parameter is needed to choose 
between ensuring a globally consistent state (all rules 
are correctly enforced at all times) and an interactive 
system (deferred consistency). 

We therefore require three types of rules within the 
rule-oriented data system: 
• Atomic rules.  These are executed immediately 

when the associated operation is executed. 
• Consistency rules.  These are executed 

asynchronously.  Rule state information is needed 
that indicates when a consistency check should be 
applied, the level of granularity on which the rule 
is applied, and set of state information that is 
updated on execution of the rule. 

• Compound rules.  These are sets of rules that are 
required to implement an operation.  To enable a 
scalable system, a compound rule is cast as an 
atomic rule and a set of deferred execution tags for 
the remaining rules.  The goal is to avoid having 
interactive response wait on remote rule 
application. 

 
6. Latency Management 
 

Scalable rule execution engines that manage 
hundreds of millions of files require an architecture 
that hides rule execution latencies.  The latency 
sources include: 
• Identification of the rules that need to be executed 

for a given requested operation. 

• Application of the rules on all files within the 
specified level of granularity within the shared 
collection. 

• Application of the rules on files in a 
geographically distributed environment 

An approach that can mask these latencies 
establishes state information for controlling the 
deferred execution of consistency constraints.  The 
rule-oriented data system inherently manages 
inconsistent state information, but relies upon 
application of consistency rules to bring the state 
information back into a globally consistent state.  This 
implies that state information is not only needed about 
the execution time and granularity of application for 
each rule on each object, but state information is also 
required for controlling the execution of the 
consistency rules. 

 
7. Summary 
 

Existing data grids, such as the Storage Resource 
Broker, hard-code consistency constraints for data 
manipulation.  A rule-based system is being designed 
that will allow new consistency constraints to be 
specified and applied.  A simplifying assumption is 
that the number of types of rules that are needed is 
limited to only three main execution scenarios: 

• Atomic rules 
• Deferred rules 
• Compound rules which are expressed as 

atomic and deferred rules. 
Whether the rule-oriented data system will function 

correctly depends upon being able to identify all rules 
that affect a given digital entity, and being able to 
identify all digital entities that a given rule can affect.  
The latter mapping may require an ordering on 
execution of rules to ensure that a consistent set of 
state information can be created in the future. 

Finally, the reification of rules in terms of the 
resulting state information that is generated when the 
rules are applied is necessary.  Each rule should be 
expressible as both the procedure that is applied, or a 
query on the resulting state information to check 
whether the rule has already been applied.  For a 
scalable system, the application of a rule should only 
be done if absolutely required (atomic rule).  In 
preference is the validation of the execution state of 
the rule by checking the state information, or the 
setting of flags for the deferred execution of the rule. 

There will be operations for which the update of the 
rule state information must be done to avoid a 
deadlock situation, in which the global state 
information cannot be brought back into a globally 
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consistent state.  The identification of these situations 
is based on the experience with the current SRB data 
management system.  For each operation that is 
performed, the SRB system manages both atomic rules 
and deferred rules through the creation of rule state 
metadata.  We can build a workable system by 
following the same strategy as implemented in the 
Storage Resource Broker for differentiating between 
the atomic, deferred, and compound rules. 

 
8. Acknowledgement 

 
This work was supported in part by the NSF ITR 

grant on Constraint-based Knowledge Systems for 
Grids, Digital Libraries, and Persistent Archives, NSF 
SCI0438741 (NARA research prototype persistent 
archive supplement), and the NSF National Science 
Digital Library/UCAR Subaward S02-36645.  The 
views and conclusions contained in this document are 
those of the authors and should not be interpreted as 
representing the official policies, either expressed or 
implied, of the National Science Foundation, the 
National Archives and Records Administration, or the 
U.S. government. 
 
9. References 
 
1. Moore, R., C. Baru, “Virtualization Services for Data 

Grids”, Book chapter in "Grid Computing: Making the 
Global Infrastructure a Reality", pp. 409-436, New 
York, John Wiley & Sons Ltd, 2003. 

2. Stockinger,  H.,O. Rana, R. Moore, A. Merzky, “Data 
Management for Grid Environments,” European High 
Performance Computing and Networks Conference, 
Amsterdam, Holland, June 2001. 

3. Moore, R., A. Rajasekar, M. Wan, “Data Grids, Digital 
Libraries and Persistent Archives: An Integrated 
Approach to Publishing, Sharing and Archiving Data”, 
Special Issue of the Proceedings of the IEEE on Grid 
Computing, Vol. 93, No.3, pp. 578-588, March 2005. 

4. Moore, R., R. Marciano, “Technologies for 
Preservation”, book chapter in “Managing Electronic 
Records”, edited by Julie McLeod and Catherine Hare, 
Facet Publishing, UK, October 2005. 

5. Baru, C., R, Moore, A. Rajasekar, M. Wan, "The SDSC 
Storage Resource Broker,” Proc. CASCON'98 
Conference, Nov.30-Dec.3, 1998, Toronto, Canada, p. 
5. 

6. IBM – General Parallel File System, a high performance 
cluster file system, http://www-
03.ibm.com/servers/eserver/clusters/software/gpfs.html 

7. Tatebe, O.,  N. Soda, Y.Morita, S. Matsuoka, S. 
Sekiguchi, "Gfarm v2: A Grid file system that supports 
high-performance distributed and parallel data 
computing," Proceedings of the 2004 Computing in 

High Energy and Nuclear Physics (CHEP04), 
Interlaken, Switzerland, September 2004. 

8. Moore, R., A. Rajasekar, M. Wan, “Storage Resource 
Broker Global Data Grids”, NASA / IEEE MSST2006, 
Fourteenth NASA Goddard / Twenty-third IEEE 
Conference on Mass Storage Systems and 
Technologies, April 2006. 

9. Global Grid Forum File System Working Group, 
https://forge.gridforum.org/projects/gfs-wg 

10. Moore, R., M. Wan, A. Rajasekar, “Storage Resource 
Broker: Generic Software Infrastructure for Managing 
Globally Distributed Data”, Proceedings of IEEE 
Conference on Globally Distributed Data, Sardinia, 
Italy, June 28, 2005. 

11. Foster, I., Kesselman, C., “The Grid: Blueprint for a 
New Computing Infrastructure,” Chapter 5, “Data 
Intensive Computing,” Morgan Kaufmann, San 
Francisco, 1999 

12. Ludaescher, B., I. Altintas, C. Berkely, D. Higgins, E. 
Jaeger, M. Jones, E.A. Lee, J. Tao, Y. Zhao, Scientific 
Workflow Management and the KEPLER System, 
special issue of Distributed and Parallel Systems, to 
appear, 2005. 

13. Enabling Grids for E-sciencE data catalog, http://egee-
jra1-dm.web.cern.ch/egee-jra1-dm/ 

14. Rajasekar, A.,R. Moore, "Data and Metadata 
Collections for Scientific Applications", High 
Performance Computing and Networking (HPCN 2001), 
Amsterdam, Holland, June 2001, pp. 72-80. 

15. Moore, R., J. JaJa, R. Chadduck, “Mitigating Risk of 
Data Loss in Preservation Environments”, NASA / 
IEEE MSST2005, Thirteenth NASA Goddard / Twenty-
second IEEE Conference on Mass Storage Systems and 
Technologies, April 2005, pp. 39-48. 

16. Moore, R., J. JaJa, A. Rajasekar, “Storage Resource 
Broker Data Grid Preservation Assessment”, SDSC 
Technical Report TR-2006.3, Feb 2006. 

17. Rajasekar, A., R. Moore, F. Berman, B. Schottlaender, 
“Digital Preservation Lifecycle Management for Multi-
media Collections, Lecture Notes in Computer Science, 
vol. 3815/2005, pp. 380-384, November 2005. 

18. Rajasekar,  A.,M. Wan, R. Moore, “mySRB and SRB, 
Components of a Data Grid”, 11th High Performance 
Distributed Computing conference, Edinburgh, 
Scotland, July 2002. 

19. Paton, Norman W. (Ed.), Active Rules in Database 
Systems, Series: Monographs in Computer Science, 
Springer, New York, 1999. 

20. Deutsch, A., L. Sui, V. Vianu, D. Zhou, “A System for 
Specification and Verification of Interactive, Data-
driven Web Applications,” SIGMOD 2006 Demo. 

21. Fedora digital object repository system, 
http://www.fedora.info/ 

22. Dourish, P., W. K. Edwards, A. LaMarca, M. Salisbury, 
“Presto: An Experimental Architecture for Fluid 
Interactive Document Spaces”, ACM Transactions on 
Computer-Human Interaction, 6(2), 1999. 

http://www-03.ibm.com/servers/eserver/clusters/software/gpfs.html
http://www-03.ibm.com/servers/eserver/clusters/software/gpfs.html
https://forge.gridforum.org/projects/gfs-wg
http://egee-jra1-dm.web.cern.ch/egee-jra1-dm/
http://egee-jra1-dm.web.cern.ch/egee-jra1-dm/
http://www.fedora.info/


www.manaraa.com

23. Freeman, E., Gelernter, D., “LifeStreams: A storage 
model for personal data”, ACM SIGMOD Bulletin 25, 
1, (March 1996), pp. 80-86. 

24. Karger, David R.,  K. Bakshi, D. Huynh, D. Quan, V. 
Sinha, “Haystack: A General Purpose Information 
Management Tool for End Users of Semistructured 
Data”, CIDR 2005. 

25. Rajasekar, A., M. Wan, R. Moore, W. Schroeder, “Data 
Grid Federation”, PDPTA 2004 - Special Session on 
New Trends in Distributed Data Access, June 2004.  


	1. Introduction 
	2. Rule-based Middleware 
	3. Design 
	4. Sample Rules 
	5. Deferred Rule Execution 
	6. Latency Management 
	7. Summary 
	8. Acknowledgement 
	9. References 

