
www.manaraa.com

A Prototype Rule-based Distributed Data Management System

Arcot Rajasekar
Mike Wan

Reagan Moore
Wayne Schroeder

San Diego Supercomputer Center
University of California, San Diego

{sekar,mwan,moore,schroede}@sdsc.edu

Abstract

Current distributed data management systems

implement internal consistency constraints directly
within the software. If these constraints change over
time, the software must be rewritten. A new approach
towards data management system based on the
dynamic execution of rules is discussed. By building
upon the experiences gained with the Storage
Resource Broker data grid, a scalable rule-based data
management system can be designed.

1. Introduction

Data Grids support data virtualization, the ability to

manage the properties of and access to shared
collections distributed across multiple storage systems.
[1] The data virtualization concept maps the physical
aspects of the storage systems to a logical view of the
information and data that is provided to the user and
applications. Shared collections are used to organize
distributed data for data grids (data sharing) [2], digital
libraries (data publication) [3], and persistent archives
(data preservation) [4].

The current state of the art in data abstraction, as
represented by the SDSC Storage Resource Broker
(SRB) [5] architecture, relies upon the following
multiple levels of virtualization:
Storage access virtualization – this level of
virtualization provides a single uniform interface for
mapping between access APIs and the protocols used
by different types of storage systems (e. g. Unix file
systems, Windows FAT32, and other custom-created
file systems such as SamQFS). Distributed file
systems usually support a limited number of operating
system types: IBM’s GPFS on Unix [6], Gfarm on
Linux systems [7]. Data grids provide uniform access
to data stored in file systems, databases, archival

storage systems, file transfer protocols, sensor data
loggers, and object ring buffers [8].
Naming virtualization – this level provides naming
transparency for shared collections including logical
data set naming, logical resource naming, and logical
user naming. It provides for access to and organization
of data independent of their location, as well as
authentication and authorization controls that are not
dependent upon the storage repositories. The Grid File
System working group of the Global Grid Forum is
exploring virtualization of file names for file systems
[9]. The SRB virtualizes naming across all types of
storage systems [10].
Process and workflow virtualization – this level
provides a virtualization of operations performed on
datasets either remotely or through the use of grid
computing services to execute workflows across
multiple compute platforms. It automates scheduling,
data movement and application execution on remote,
and possibly multiple computational platforms [11].
The Kepler workflow system uses actors to define
allowed operations, and controls interactions between
actors [12]. Kepler actors have been developed that
manage access to SRB data collections.
Information virtualization – this level provides a
way to associate metadata with the data. Multiple types
of metadata may be specified from simple attribute-
value-unit triplets to semi-structured metadata. The
gLite Metadata Catalog associates metadata with
entities that are defined by globally unique identifiers
[13]. The SRB system associates metadata directly
with the logical file name space [14].

 The data virtualization/abstraction as discussed
above still does not provide complete transparency for
data and information management. The additional level
that is needed is “policy/constraint virtualization”
which provides virtualization at the data management
level as opposed to data and application (workflow)

www.manaraa.com

levels. The development of a constraint-based
virtualization system for data management can be
viewed as a new level of virtualization of data and
information management.

When a user or organization stores data with
associated metadata in a data grid, they apply policies
to ensure that the resulting collection will meet their
goals. Such policies include disaster recovery
(syntactic replication) [15], persistent preservation for
the long term (temporal replication) [16], caching on
disk for ease of access, load balancing across
resources, access by bulk operations for managing
latency of wide area networks, automated metadata
extraction and registration, work-flow launching,
derived product generation, transformative migration
of the encoding format (semantic replication) [17], etc.
These policies can be applied at the level of the entire
collection, or at a sub-collection level, or at the level of
an individual dataset, or for a specific user and/or for
specific logical resources. For example in the same
data grid, one may have different policies for
replication of files depending upon the importance of
the sub-collection.

A constraint-based knowledge system virtualizes
constraints. The rules and constraints that are used to
manage state transitions within a data grid (changes
to state information resulting from operations within
the data grid) are explicitly defined. By naming the

rules and constraints, organizing them in rule sets, and
choosing the level of granularity across which the
rules will be applied, we expect to generalize data
management systems. The goal is to be able to change
the sets of rules and add new rules without having to
rewrite code. In effect, this is the virtualization of the
SRB data grid control mechanisms. Constraint
virtualization is needed across all levels of the system,
including user access, global consistency properties,
and state transitions during data grid operations.

2. Rule-based Middleware

The current architecture design for rule-based
middleware is shown in Figure 1. The architecture
differentiates between the administrative commands
needed to manage the rules, and the rules that invoke
data management modules. When a user invokes a
service, it fires a rule that uses the information from
the rule base, status, and metadata catalog to invoke
micro-services. The micro-services either change the
metadata catalog or change the resource
(read/write/create/etc).

The management of rule-based middleware is
being investigated from multiple perspectives. The
first approach we are trying is to look at the constraints

Client Interface Admin Interface

Confs

Rule
Base Meta Data

Base

Engine

Rule

Current
State

Rule Invoker

Micro
Service

Modules

Resource-based
Services

Micro
Service

Modules

Metadata-based
Services

Resources Metadata
Modifier
Module

Config
Modifier
Module

Rule
Modifier
Module

Consis-
tency
Check

Module

Service
Manager

Consis-
tency
Check

Module

Consis-
tency
Check

Module

Figure 1. Rule-based middleware framework

www.manaraa.com

used within the SRB to understand how they can be
implemented using rule-based concepts [18]. This has
required the assessment of the multiple pieces of state
information in the SRB (there are more than 100) to
define the associated rules and consistency constraints,
and to see how they can be organized into classes of
rules. The goal is to see how these classes of rules can
be integrated into a data management framework
without losing any functionality. This study is
underway. Our aim is to use these classes as the
fundamental blocks for organizing the rules. Related
work is the characterization of rules used in active
databases [19].

The second approach we are trying is specification
of a language for consistency constraints [20]. This is
an on-going activity to verify the syntax and semantics
required for a language that describes the rules
performed within the SRB. The research is being
conducted jointly by SDSC staff, Alin Deutsch (UCSD
Professor), and his graduate student Dayou Zhou.

The third approach we are trying is from the
viewpoint of the collection itself. The main concept
here is to consider the state information that are needed
to describe manipulation of a collection in a digital
library. This will be helpful in deriving rules for
collection usage and access. This work is being done
by Ioannis Katsis, a Graduate Student Research
Assistant working with Yannis Papakonstantinou
(UCSD Professor).

The fourth approach we are trying is from the
perspective of a persistent archive. In this area, our
goal is to define the abstractions and workflows that
are needed to perform archival processes. The long-
term goal is to be able to characterize the management
policies needed for assuring the authenticity and
integrity of records within a collection.

3. Design

In addition to the specification of requirements
and development of an appropriate rule expression
language, we have also begun research on the design
constraints required to build a scalable system.
Multiple rule-based systems are now under
development within academia, including Fedora
(Cornell) [21], Presto document system [22],
Lifestreams storage model [23], and Haystack
semantic web authoring [24]. The systems examine
the use of rules to control a particular aspect of their
data management system. In a separate project, we are
integrating the current SRB data management system

as the distributed data support infrastructure for the
Fedora digital library. The integrated system will
allow Fedora to assert relationships about the metadata
attributes associated with the digital entities stored in
the SRB. Note that this integrated system, while a
form of constraint management, will not manage the
constraints that the SRB must implement to guarantee
consistent data grid state information. Instead,
relationships between the descriptive metadata
attributes about SRB digital entities will be managed
independently of the SRB software by Fedora.

We are seeking a generic solution that will support
rules for data placement, rules for controlling access,
rules for presentation, rules for federation, and rules
for data ingestion. Since the SRB already supports
over 630 TBs of data with more than 100 million files
at SDSC, the system must apply rule sets to massive
collections.

The development of a scalable system requires the
following mechanisms:
• Reification of constraints into metadata attributes.

It is easier to do a join on a metadata table than it
is to apply constraints while reading every object
in the collection.

• Granularity. The rules may apply to a subset of a
name space. Examples are use of groups to
represent multiple users, use of sub-collections to
represent multiple files, use of logical schema to
represent a set of descriptive metadata.

• Constraint state information. We will need to
maintain status information about the application
of each constraint on each digital entity in the
shared collection. The status information allows
constraints to be dynamically changed and lazily
updated.

• Collective constraints. These are assertions about
levels of granularity and typically apply within a
name space. An example is checking the integrity
of a collection. The associated integrity rule is the
periodic application of a process to validate a
checksum for each file. The associated constraint
state information is the date that the checksum was
last validated.

• Procedural constraints. These are processes that
typically require evaluation of rules that go across
multiple name spaces (logical resource, logical
file, distinguished user name). An example is the
allowed view on metadata by a given user.

The expected problems in developing a constraint-
based knowledge system will be:
• Scalability. Application of dynamic constraints on

collections with a billion records.

www.manaraa.com

• Deadlock. Ordering of the application of
constraints to ensure that the process is
computable.

• Complexity. Identification of the generic
constraints that are sufficient for handling
expected procedures and integrative constraints
needed for data management.

• Size. Management of the constraint space itself
should not take more space than the collection
metadata. Since we currently support 500
attributes per digital entity, will we be able to
support 1000 constraints and keep the database
size manageable?
The constraints that are currently supported by the

SRB can be classified by the relationships they impose
on the five logical name spaces (resource names, user
names, file names, metadata names, and access
controls). We are investigating ways to characterize
the existing constraints in the following classes.
User access rules:

• views of collections (presentation of restricted
sets of metadata).

• views of files (presentation of restricted lists
of files).

• allowed operations on collections (ability to
specify and present only the set of operations
that the user is allowed to perform).

• allowed operations on files.
• end-to-end encryption constraints.

Procedural rules:
• rules for data placement, the locations where

copies are preferentially deposited.
• rules for aggregation of files into sub-

directories.
• rules for access controls on storage systems.
• rules for transformative migrations on data

during display.
• rules for consistency checking of metadata.
• rules for integrity checking of files

(verification of checksum).
• rules for pinning on disk.
• rules for setting and releasing locks.
• rules for version creation.
• rules for aggregation into physical containers.
• rules for use of parallel I/O streams.
• rules for choice of transport protocol to

manage firewall interactions.
• rules for interactions between data grids

(authentication constraints). [25]
• rules for sharing of name spaces between data

grids.
• rules for updating audit trails.

Global consistency properties
• assertions on the synchronization of replicas.
• assertions on the synchronization of name

spaces in data grid federations.
• assertions on data organization in a collection

hierarchy.
• assertions for application of access

constraints.
• assertions on metadata consistency.
• assertions on name-space sharing between

data grids.
• assertions on use of storage systems

(maximum amount of data stored).

4. Sample Rules

We provide some rules that illustrate the concept of
constraint-virtualization.

ingestInCollection(S) :- /* store & backup */
 chkCond1(S), ingest(S), register(S)

findBackUpRsrc(S.Coll, R), replicate(S,R).

The above compound rule checks that condition-1 is
satisfied, retrieves the metadata from the remote
location (ingest), registers the metadata into the state
catalog (register), identifies an appropriate storage
location for creating a replica of the metadata and
performs the replication of the metadata, registering
the location of the replica into the state catalog. Each
of the component tasks can be implemented as an
atomic rule. Note that some of these tasks can be
deferred to a later date, such as creation of a replica at
a remote site when the remote system becomes
available.

ingestInCollection(S) :- /*store & check */
 chkCond2(S), computeClntChkSum(S,C1),
 ingest(S), register(S),
 computeSerChkSum(S,C2),
 checkAndRegisterChkSum(C1,C2,S).

The above rule checks that condition-2 is satisfied,
computes a checksum on the metadata at the remote
storage location, retrieves the metadata from the
remote location (ingest), computes a second checksum
after the transfer, verifies the checksum is correct,
registers the metadata into the state catalog (register),
and registers the value of the checksum into the state
catalog.

ingestInCollection(S) :- /store, check, backup &

 check */
 chkCond3(S),computeClntChkSum(S,C1),

www.manaraa.com

 ingest(S), register(S),
 computeSerChkSum(S,C2),
 checkAndRegisterChkSum(C1,C2,S),
 findBackUpRsrc(S.Coll, R), replicate(S,R)
 computeSerChkSum(S,C3),
 checkAndRegisterChkSum(C2,C3,S).

The above rule checks that condition-3 is satisfied,
executes the rules from example 2, and then also
locates a backup resource for the metadata, replicates
the metadata, verifies a checksum on the replicated
metadata, and registers the checksum value into the
state information.

ingestInCollection(S) :- /*store, check,
 backup & extract metadata */
 chkCond4(S), computeClntChkSum(S,C1),
 ingest(S), register(S),
 computeSerChkSum(S,C2),
 checkAndRegisterChkSum(C1,C2,S),
 findBackUpRsrc(S.Coll,R),
 [replicate(S,R) || extractRegisterMetadata(S)].

The above rule checks that condition-4 is satisfied,
executes steps from example 3, but also in parallel
with the replication of the metadata extracts additional
metadata and registers the values.

The example conditions are as follows:
chkCond1(S) :- user(S) == ‘adil@cclrc’, i.e. perform
the rule for only the specified user ‘adil@cclrc”
chkCond1(S) :- coll(S) like ‘*/scec.sdsc/img/*’, i.e.
perform the rule for all collections that include the
collection hierarchy ‘/scec.sdsc/img/ in the pathname.
chkCond2(S) :- user(S) == ‘*@nara’, i.e. perform the
rule for all users within the ‘nara’ project.
chkCond3(S) :- user(S) == ‘@salk’, i.e. perform the
rule for all users within the ‘salk’ project.
chkCond4(S) :- user(S) == ‘@birn’, datatype(S) ==
‘DICOM’, i.e. perform the rule for all users within the
‘birn’ project for all data of type ‘DICOM’.
[OprList] implies delay execution to a later time
 or queue execution in a CronJobManager
Opr||Opr implies do the rules in parallel
Opr, Opr implies do the rules serially

The application of user access rules can be
governed by metadata kept for each user and each
record in the data grid. The application of global
consistency properties can be done through workflow
systems that use atomic transactions on the data grid to
check the status of the records and update as necessary.
The application of the procedural rules is much more
difficult. It is straightforward to define the constraints

that need to be checked when applying a defined data
or metadata operation. The inverse is much more
difficult, namely the identification of the set of
constraints that might cause a particular piece of state
information to change. This is needed to ensure that
the application of the constraints results in a
deterministic system. An example is that the state
information managed by the SRB data grid depends
upon the order in which the rules are applied. At the
moment, these rules are hard-coded in software, so the
same result occurs for a given operation. When the
rules can be changed dynamically, it is not obvious
that the result is well-defined, unless the interactions
between the changed rule and all other rules are
known. This can be reduced to a characterization of
the order in which the rules must be applied for a
deterministic solution. In effect, an algebra is needed
on allowed composition of constraints when executing
a data grid operation.

The approach that is planned for the
implementation of state information virtualization is
based on the phased porting of existing Storage
Resource Broker modules to the new information
management infrastructure. This implies that a hybrid
system may be initially developed, in which some
constraints are hard-coded in software, and other
constraints are implemented by checking a rule base.
This approach has the advantage of identifying sets of
constraint rules associated with a given data
manipulation operation, identifying impact of applying
dynamic constraints on performance, and enabling
modular development. The goal is an open-source
version that has no restrictions on distribution.

5. Deferred Rule Execution

The creation of a scalable rule-oriented data system

depends upon the ability to do deferred execution of
rules. In the examples listed above, some of the
operations can be deferred to a later time, such as the
creation of a replica. The approach that has been
followed in the SRB data grid has been to define state
information for each object for which a deferred
operation must eventually be executed. This is
essential when dealing with wide-area-network
latencies. Examples of deferred execution include:
• Synchronization of replicas after changing one of

the copies. A “dirty bit” is turned on to indicate
that all future reads and writes should be done to
the modified copy. A synchronization command
can be executed at a future time to update all of
the replicas.

www.manaraa.com

• Validation of checksums. Even after a file has
been stored successfully, it may be become
corrupted. Thus checksums must be continually
revalidated to ensure integrity, preferably at a
frequency that is four times faster than the
expected degradation rate. A time stamp is
needed for each object for when the checksum
was last validated.

• Placement of files within a distributed storage
environment. A logical resource name can be
used to identify the locations of the multiple
storage systems where the copies will reside. If a
new physical resource is added to the logical
resource name, then a copy would need to be
created at the new location. A change flag is
needed to denote that the replication operation
should be executed.

This approach implies that the state information
used to characterize the rules must be periodically
checked by the data management system, A set of
meta-rules will be needed to control the frequency of
checking of state information, and the specification of
the name-space granularity over which the rules will
be applied. A tuning parameter is needed to choose
between ensuring a globally consistent state (all rules
are correctly enforced at all times) and an interactive
system (deferred consistency).

We therefore require three types of rules within the
rule-oriented data system:
• Atomic rules. These are executed immediately

when the associated operation is executed.
• Consistency rules. These are executed

asynchronously. Rule state information is needed
that indicates when a consistency check should be
applied, the level of granularity on which the rule
is applied, and set of state information that is
updated on execution of the rule.

• Compound rules. These are sets of rules that are
required to implement an operation. To enable a
scalable system, a compound rule is cast as an
atomic rule and a set of deferred execution tags for
the remaining rules. The goal is to avoid having
interactive response wait on remote rule
application.

6. Latency Management

Scalable rule execution engines that manage
hundreds of millions of files require an architecture
that hides rule execution latencies. The latency
sources include:
• Identification of the rules that need to be executed

for a given requested operation.

• Application of the rules on all files within the
specified level of granularity within the shared
collection.

• Application of the rules on files in a
geographically distributed environment

An approach that can mask these latencies
establishes state information for controlling the
deferred execution of consistency constraints. The
rule-oriented data system inherently manages
inconsistent state information, but relies upon
application of consistency rules to bring the state
information back into a globally consistent state. This
implies that state information is not only needed about
the execution time and granularity of application for
each rule on each object, but state information is also
required for controlling the execution of the
consistency rules.

7. Summary

Existing data grids, such as the Storage Resource
Broker, hard-code consistency constraints for data
manipulation. A rule-based system is being designed
that will allow new consistency constraints to be
specified and applied. A simplifying assumption is
that the number of types of rules that are needed is
limited to only three main execution scenarios:

• Atomic rules
• Deferred rules
• Compound rules which are expressed as

atomic and deferred rules.
Whether the rule-oriented data system will function

correctly depends upon being able to identify all rules
that affect a given digital entity, and being able to
identify all digital entities that a given rule can affect.
The latter mapping may require an ordering on
execution of rules to ensure that a consistent set of
state information can be created in the future.

Finally, the reification of rules in terms of the
resulting state information that is generated when the
rules are applied is necessary. Each rule should be
expressible as both the procedure that is applied, or a
query on the resulting state information to check
whether the rule has already been applied. For a
scalable system, the application of a rule should only
be done if absolutely required (atomic rule). In
preference is the validation of the execution state of
the rule by checking the state information, or the
setting of flags for the deferred execution of the rule.

There will be operations for which the update of the
rule state information must be done to avoid a
deadlock situation, in which the global state
information cannot be brought back into a globally

www.manaraa.com

consistent state. The identification of these situations
is based on the experience with the current SRB data
management system. For each operation that is
performed, the SRB system manages both atomic rules
and deferred rules through the creation of rule state
metadata. We can build a workable system by
following the same strategy as implemented in the
Storage Resource Broker for differentiating between
the atomic, deferred, and compound rules.

8. Acknowledgement

This work was supported in part by the NSF ITR

grant on Constraint-based Knowledge Systems for
Grids, Digital Libraries, and Persistent Archives, NSF
SCI0438741 (NARA research prototype persistent
archive supplement), and the NSF National Science
Digital Library/UCAR Subaward S02-36645. The
views and conclusions contained in this document are
those of the authors and should not be interpreted as
representing the official policies, either expressed or
implied, of the National Science Foundation, the
National Archives and Records Administration, or the
U.S. government.

9. References

1. Moore, R., C. Baru, “Virtualization Services for Data

Grids”, Book chapter in "Grid Computing: Making the
Global Infrastructure a Reality", pp. 409-436, New
York, John Wiley & Sons Ltd, 2003.

2. Stockinger, H.,O. Rana, R. Moore, A. Merzky, “Data
Management for Grid Environments,” European High
Performance Computing and Networks Conference,
Amsterdam, Holland, June 2001.

3. Moore, R., A. Rajasekar, M. Wan, “Data Grids, Digital
Libraries and Persistent Archives: An Integrated
Approach to Publishing, Sharing and Archiving Data”,
Special Issue of the Proceedings of the IEEE on Grid
Computing, Vol. 93, No.3, pp. 578-588, March 2005.

4. Moore, R., R. Marciano, “Technologies for
Preservation”, book chapter in “Managing Electronic
Records”, edited by Julie McLeod and Catherine Hare,
Facet Publishing, UK, October 2005.

5. Baru, C., R, Moore, A. Rajasekar, M. Wan, "The SDSC
Storage Resource Broker,” Proc. CASCON'98
Conference, Nov.30-Dec.3, 1998, Toronto, Canada, p.
5.

6. IBM – General Parallel File System, a high performance
cluster file system, http://www-
03.ibm.com/servers/eserver/clusters/software/gpfs.html

7. Tatebe, O., N. Soda, Y.Morita, S. Matsuoka, S.
Sekiguchi, "Gfarm v2: A Grid file system that supports
high-performance distributed and parallel data
computing," Proceedings of the 2004 Computing in

High Energy and Nuclear Physics (CHEP04),
Interlaken, Switzerland, September 2004.

8. Moore, R., A. Rajasekar, M. Wan, “Storage Resource
Broker Global Data Grids”, NASA / IEEE MSST2006,
Fourteenth NASA Goddard / Twenty-third IEEE
Conference on Mass Storage Systems and
Technologies, April 2006.

9. Global Grid Forum File System Working Group,
https://forge.gridforum.org/projects/gfs-wg

10. Moore, R., M. Wan, A. Rajasekar, “Storage Resource
Broker: Generic Software Infrastructure for Managing
Globally Distributed Data”, Proceedings of IEEE
Conference on Globally Distributed Data, Sardinia,
Italy, June 28, 2005.

11. Foster, I., Kesselman, C., “The Grid: Blueprint for a
New Computing Infrastructure,” Chapter 5, “Data
Intensive Computing,” Morgan Kaufmann, San
Francisco, 1999

12. Ludaescher, B., I. Altintas, C. Berkely, D. Higgins, E.
Jaeger, M. Jones, E.A. Lee, J. Tao, Y. Zhao, Scientific
Workflow Management and the KEPLER System,
special issue of Distributed and Parallel Systems, to
appear, 2005.

13. Enabling Grids for E-sciencE data catalog, http://egee-
jra1-dm.web.cern.ch/egee-jra1-dm/

14. Rajasekar, A.,R. Moore, "Data and Metadata
Collections for Scientific Applications", High
Performance Computing and Networking (HPCN 2001),
Amsterdam, Holland, June 2001, pp. 72-80.

15. Moore, R., J. JaJa, R. Chadduck, “Mitigating Risk of
Data Loss in Preservation Environments”, NASA /
IEEE MSST2005, Thirteenth NASA Goddard / Twenty-
second IEEE Conference on Mass Storage Systems and
Technologies, April 2005, pp. 39-48.

16. Moore, R., J. JaJa, A. Rajasekar, “Storage Resource
Broker Data Grid Preservation Assessment”, SDSC
Technical Report TR-2006.3, Feb 2006.

17. Rajasekar, A., R. Moore, F. Berman, B. Schottlaender,
“Digital Preservation Lifecycle Management for Multi-
media Collections, Lecture Notes in Computer Science,
vol. 3815/2005, pp. 380-384, November 2005.

18. Rajasekar, A.,M. Wan, R. Moore, “mySRB and SRB,
Components of a Data Grid”, 11th High Performance
Distributed Computing conference, Edinburgh,
Scotland, July 2002.

19. Paton, Norman W. (Ed.), Active Rules in Database
Systems, Series: Monographs in Computer Science,
Springer, New York, 1999.

20. Deutsch, A., L. Sui, V. Vianu, D. Zhou, “A System for
Specification and Verification of Interactive, Data-
driven Web Applications,” SIGMOD 2006 Demo.

21. Fedora digital object repository system,
http://www.fedora.info/

22. Dourish, P., W. K. Edwards, A. LaMarca, M. Salisbury,
“Presto: An Experimental Architecture for Fluid
Interactive Document Spaces”, ACM Transactions on
Computer-Human Interaction, 6(2), 1999.

http://www-03.ibm.com/servers/eserver/clusters/software/gpfs.html
http://www-03.ibm.com/servers/eserver/clusters/software/gpfs.html
https://forge.gridforum.org/projects/gfs-wg
http://egee-jra1-dm.web.cern.ch/egee-jra1-dm/
http://egee-jra1-dm.web.cern.ch/egee-jra1-dm/
http://www.fedora.info/

www.manaraa.com

23. Freeman, E., Gelernter, D., “LifeStreams: A storage
model for personal data”, ACM SIGMOD Bulletin 25,
1, (March 1996), pp. 80-86.

24. Karger, David R., K. Bakshi, D. Huynh, D. Quan, V.
Sinha, “Haystack: A General Purpose Information
Management Tool for End Users of Semistructured
Data”, CIDR 2005.

25. Rajasekar, A., M. Wan, R. Moore, W. Schroeder, “Data
Grid Federation”, PDPTA 2004 - Special Session on
New Trends in Distributed Data Access, June 2004.

	1. Introduction
	2. Rule-based Middleware
	3. Design
	4. Sample Rules
	5. Deferred Rule Execution
	6. Latency Management
	7. Summary
	8. Acknowledgement
	9. References

